

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

OIIE Use Case Architecture

Requirements, Description, and Views

Contributors:
Matt Selway, University of South Australia

Sandra Fabiano, Yokogawa

June 29, 2020

This document describes the OIIE Use Case Architecture, its requirements, and the representations to be used

for each of its constituents: Use Cases, Scenarios, Events, and User Stories.

P a g e | 1

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

Contents
Glossary ..1

Document Versioning..1

Overview..2

Architectural Requirements ...3

Updates to the Architecture ...3

Architecture Components ..4

Use Cases ..4

Scenarios..4

Events ..5

User Stories ..5

Naming/Identif ication Scheme for Use Case Components ...5

Considerations ..5

Use Case Identif ier Scheme ...6

Scenario Identif ier Scheme ..6

Event Identif ier Scheme ...7

User Story Identif ier Scheme..8

Glossary
OGI Pilot

Oil & Gas Interoperability Pilot

OIIE

Open Industrial Interoperability Ecosystem

Document Versioning

Version Date Major Changes

1.0 2019-02-05 Initial description of the 3+1-layer architecture, in contrast to the original 2-layer

architecture, and the naming and identif ication scheme for the components.

- RC2 2020-06-29 Updated template

2 | P a g e

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

Overview
The Open Industrial Interoperability Ecosystem (OIIE) is built around a set of interoperability use cases that

describe how industrial systems are to interact to achieve functionality desired/required by organizations involved
in asset lifecycle management. The use cases allow organizations (EPCs, O/Os, Sof tware Vendors, etc.) to
declare conformance to specif ic reusable chunks of functionality, with which its systems can interoperate. The set

of use cases is incrementally extended to incorporate new functio nality as each set is validated by pilots, such as

the OGI Pilot, with the inclusion of new use cases guided by industry partners.

Each use case conforms to the OIIE Use Case Architecture, which def ines a standardized breakdown of Use

Cases into smaller reusable parts, as well as a top-level overview of a Use Case or group of connected Use
Cases. This breakdown forms a 3+1 level architecture, totaling 4 main components: Use Cases, Scenarios,
Events, and User Stories. Each of the f irst two components decompose into the next, i.e., Use Cases decompose

into Scenarios and Scenarios decompose into Events, while the fourth, User Stories, forms the “+1” as they can
cross the other layers to illustrate specif ic events or whole use cases as required to achieve their purpose. The

components of the Use Case Architecture and the relationships between them are summarized in Figure 1.

Use Cases describe common interactions and context to achieve an interoperability goal and are decomposed
into Scenarios. Each Scenario provides additional details and requirements on how to achieve an interaction
based on a specif ic group of Events. The Event descriptions detail specif ic message exchanges and their

requirements but are general enough to support dif ferent realizations of the exchanges over dif ferent protocols
and data formats. Finally, these three components are tied together by User Stories, which abstract f rom the
underlying components to provide a higher-level overview of interactions and connect Use Cases in a logical f low.

An overview of the Use Case Architecture is shown in Figure 2.

Figure 1 Relationships between Use Case Architecture Components

Figure 2 OIIE Use Case Architecture Overview

P a g e | 3

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

This document describes the Use Case Architecture itself and not any particular Use Cases, which are described
separately (refer to the document: 02-List of Use Cases). In the following, the requirements for the Use Case

Architecture itself are described, followed by the dif ferences between the current and previously used architecture

of past OGI Pilot phases, and the specif ication of each architecture component is detailed.

Architectural Requirements

To support interoperability across the Oil & Gas industry (and process industries more generally), it is recognized
that a consistent method for describing and specifying interoperability use cases is required. By describing use

cases consistently, specif ic interoperability concerns can be addressed in a prioritized manner and participants
know what to expect when taking part in dif ferent sets of interactions . To that end, the Use Case Architecture

itself has been developed to fulf il certain requirements, including:

Reusability and Modularity
The components of the Use Case Architecture need to provide building blocks that can be reused and
recombined in dif ferent contexts. This helps support bounded scopes for agreement, implementation, and

conformance. In addition, the same building blocks can be reused to form novel use cases without requiring new

implementation.

Low-level and High-level Views

The use cases must be described using means suitable for a wide range of audiences , including implementors,
business managers, and those in-between. Therefore, it must provide low-level views that detail implementation
concerns as well as high-level views that illustrate the overall use case(s) and how they f it together to meet

business needs.

Industry/end-user participation
A long-term goal is to have industry support in the development of use cases to address common needs identif ied

by industry partners. The architecture needs to be described such that an organization can propose a use case

following the architecture that can then be validated by MIMOSA and incorporated into the set of OIIE Use Cases.

Interoperability Focused

The primary goal of OIIE Use Cases is interoperability between systems. Therefore, much of the description of a
Use Case (and related components) needs to make system interactions explicit while situating them in context.
However, it need not provide detailed descriptions of activities that may occur only within a system (or tightly

integrated system-of-systems).

Updates to the Architecture
The OIIE Use Case Architecture (formerly OGI Use Case Architecture) has been used in past OGI Pilot phases.

This document describes an updated version of this architecture over what was used previously. The following

brief ly lists the key changes to the previous architecture:

• From 2 Layer to 3+1 Layer Architecture. The original architecture only specif ied 2 layers: Use Cases and

Scenarios.

• Addition of Events: previously Events were listed in Scenarios simply as the CCOM BODs that were
required for the Scenario. The new version abstracts f rom CCOM BODs by introducing Events, which

generalize specif ic message exchanges allowing dif ferent representations (not just CCOM BODs) and

other forms of events. This change supports the reusability and modularity requirement.

• Addition of User Stories: User Stories were previously used informally to help illustrate the f low of Use

Cases and Scenarios. By making the User Stories an explicit part of the architecture, it helps fulf il the
requirement to make the use cases understandable to a wide range of aud iences. Also, by formalizing the

02-List%20of%20Use%20Cases.pdf

4 | P a g e

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

notation (through rules and conventions) used for User Stories , it supports industry participation in the

creation of consistent fully-described use cases.

Architecture Components
The Use Case Architecture identif ies four components for describing use cases in a decomposable way: Use

Cases, Scenarios, Events, and User Stories. This section describes each in turn and def ines what each

component must contain.

Note The current descriptions are a work in progress and will be progressively completed with more detail.

Note When referring to components of the Use Case Architecture, the terms “Use Case”, “Scenario”, and “Event” are capitalized. When
using the same terms with a general meaning, lower case is used.

Use Cases

A Use Case provides a general description of interactions to achieve an interoperability goal within a specif ied
scope and background context. The description includes the actors (systems or people) that are interacting, any

preconditions and triggering events/conditions/use cases, the success case, a main success workf low (and
possibly other workf lows, e.g., exception f lows, as required), and the Scenarios that are necessary to perform

those workf lows.

An example Use Case is “Asset Installation/Removal Updates” which describes the interactions between
Operations (personnel) and Maintenance systems to perform a corrective maintenance task (removing an asset
and installing a new asset) and the resulting publication of conf iguration updates (the asset removal/installation

events) f rom the Maintenance Management Systems to Operations & Maintenance Systems. The Use Case also
covers the situation where a Device Monitoring System senses the asset removal/installation and pushes the
event to the Maintenance Management System to be reconciled against any current Work Orders. Only the

publication of events is covered by OIIE Scenarios, as the Maintenance Personnel interactions are for illustration
purposes and to provide context for the Scenarios. While there are four publication events, only two Scenarios are

required due to reuse.

Scenarios

A Scenario provides a specif ic description of a group of events that achieves an interaction detailing data and
conf iguration requirements; multip le scenarios may be required to achieve the goal of a use case and the same
scenario may be reused by the same or in multiple use cases. Items included in the description of a Scenario are:

the actors involved in the interaction (usually systems only ; if a person is specif ied, it indicates a device that the
person is using); the data content in general terms; required data format(s) such as the CCOM Business Object
Document (BOD) format; the use of particular reference data libraries or items to ensure interoperability for the

Scenario; any required conf iguration of the Information Service Bus (e.g., channel/topic conf iguration); any other
inf rastructure requirements (support systems that are required, etc.); and the Events required to achieve the

Scenario.

For example, the Scenario “Publish Asset Removal/Installation events f rom MMS to O&M” describes the
publication of asset removal or installation events f rom a Maintenance Management System to Operations &
Maintenance systems. It specif ies the need to exchange the functional location, asset, and time of the event (the

data content requirements), the use of CCOM BODs (data format), the specif ic types of events (install and
remove) f rom the MIMOSA reference data library, the use of the ISBM publish/subscribe mechanism and its
conf iguration, and the specif ic Events used in the interaction. As Events may have multiple realizations, only one

of which may be a CCOM BOD, the Scenario specif ies that CCOM BODs are used explicitly, rather than only
specifying the Events. If no restrictions were placed on the data format, any implementation of an Event

can/should be supported.

P a g e | 5

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

Events

An Event describes an individual message exchange between systems, detailing data and processing
requirements. This includes specif ic data content (in contrast to the general description of the Scenarios), any
processing requirements placed on the recipient (e.g., if a f lag is set to true, then behave in a certain way), and

any expected response event such as a conf irmation or a query result .

Events are still abstract in that they can be realized in multiple ways to support various mechanisms for exchange
while adhering to the data and other requirements. Each Event is provided with a reference implementation, of ten

described in CCOM BOD (XML) format. This allows events to be reused in dif ferent contexts and to support future
exchange mechanisms. Moreover, remaining partially abstract allows Events to represent dif ferent types of

events (note, lowercase ‘e’) where necessary.

An example Event is “Update Asset Conf iguration”, which describes the data required to update the asset
conf iguration information through one or more CCOM AssetSegmentEvent objects (which associate an asset to a
functional location at a specif ic time). Its requirements s tate that there is no expected response event and

conf irmation is optional (as it is intended to be a published event), and that the receiving systems must update
their asset conf iguration information with the new association (whatever it means for the rec eiving system). In
contrast to the Scenario in which it is used, this Event does not specify any restriction on the type of

AssetSegmentEvent that is to be updated, while the Scenario requires that it be either an “Install” or a “Remove”.

By not overly restricting the Event itself , the Event can be reused more easily in dif ferent contexts.

User Stories

A User Story provides a high-level graphical representation of interactions and events def ined by one or more use

cases and/or scenarios. They are designed to provide a business level overview of interactions and Use Cases
across any level of the architecture (as necessary) using a simple graphical notation. The notation dif ferentiates
people, systems, and data/documents and connects them using arrows to illus trate interactions. A User Story

consists of a number of f rames, each f rame illustrat ing a small portion of the Story and can be connected to

preceding f rames in various ways to illustrate continuity and/or use of data f rom a previous f rame.

For example, a User Story may illustrate the various events and interactions (including person-to-person, system-

to-system, person-to-system, business-to-business, etc.) involved in a series of related Use Cases, such as the
triggering of a maintenance event based on condition data which leads to the removal of an asset and the
installation of a new asset. In this way, User Stories can simply describe a logical sequence of related Use Cases,

rather than following a trail of ‘triggering events’ def ined in the Use Cases.

Naming/Identification Scheme for Use Case Components

The dif ferent components of the architecture (Use Cases, Scenarios, and Events, and User Stories) will be given

consistent identif iers based on a naming scheme.

Considerations

There are several types of identif ication schemes that can be considered, for example: a simple numbered

scheme (e.g., 1, 2, 3, …; a, b, c, …; etc.), using the “name” of the use case, (randomly) generated unique

identif ier, or “smart” identif iers that have parts representing dif ferent information categories.

The original Use Cases, for example, were specif ied using a simple numbering scheme in the order that they

were def ined. This can be problematic as the numbers are meaningless but imply an ordering. Coincidentally, this
is the same order in which the Use Cases occurred. However, as new Use Cases are added, the occurrence
order and Use Case number order diverge, possibly leading to confusion. Renumbering the Use Cases is not an

appropriate solution, so the orderings will become inconsistent. The positive side of using a simple numbering
system is that it is simple and provides a short and simple way of referencing another Use Case (also applies to

Scenarios), such as UC1, UC13, etc.

6 | P a g e

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

Using the “name” of the use case as its identif ier can make it clear and understandable. However, names can
change over time if it is deemed that they do not quite represent the content—or someone just thinks of a “better”

name. This will cause dif f iculties in tracking Use Cases (and other components), whereas as a consistent
identif ier will better support change management. For example, if a name change occurs , the identif ier remains

unchanged.

The third option is to generate identif iers using some well-known identif ier scheme. As the Use Case Architecture
is designed for human consumption, generating meaningless opaque identif iers is not appropriate. Moreover,
such identif ication schemes of ten lead to large identif ies, whereas it is convenient in many cases to use an

abbreviated form of the identif iers, as long as it can be done without compromising the meaning, e.g., UC1 (for

Use Case 1).

The f inal alternative is to use some form of “smart” identif ier based on the dif ferent components of the identif ier

providing specif ic information, e.g., organization, category, system actor, etc. Such an approach can provide
meaningful identif iers if the encoding is simple to understand. However, it can lead to long identif iers that cannot
be conveniently abbreviated and, depending on the components of the identif ier, it may need to change. For

example, if the category were encoded in the identif ier and the Use Cases were recategorized —which can easily
occur as categorization schemes are of ten developed f rom a particular viewpoint at a particular time—the

identif ier would have to change or, if not, create an inconsistency.

Taking these considerations into account, the dif ferent alternatives may be more suited to dif ferent components of

the Use Case Architecture. The following describe the naming/identif ier schemes for each component.

Use Case Identifier Scheme

Use Cases will be identif ied using a simple numeric identif ier. The numbers will be allocated in the order in which

the Use Cases are def ined and do not imply any ordering or dependencies between the Use Cases.
Dependencies between Use Cases are explicitly listed as part of the Use Case content, and the f low of Use

Cases can be obtained f rom the Use Stories.

Use Case can be identif ied using any of the following equivalent forms:

• Long form: Use Case 1, Use Case 2, …

• Abbreviated form: UC1, UC2, …

• Hyphenated abbreviation (for readability): UC-1, UC-2, …, UC-20

If the context is clearly referring to a Use Case, the number alone can be used to identify the Use Case.

Proposed or Pending Use Cases that have not yet been fully def ined or accepted as OIIE Use Cases will not be
assigned a numeric identif ier. A numeric identif ier will only be assigned once the Use Case has been def ined to

the extent that it includes all key details and has been accepted as a Use Case by an appropriate community.

Note The Use Cases defined before the update to the Use Case Architecture may not fulfil the criteria of including all key details;
however, for consistency, their numeric identifiers will remain unchanged.

Scenario Identifier Scheme

Scenarios will be identif ied using a simple numeric identif ier. The numbers will be allocated in the order in which
the Scenarios are declared and do not imply any ordering or dependencies between Scenarios. Occurrences of

Scenarios and, hence, their ordering, are determined by the process f lows of the Use Cases.

In contrast to Use Cases, Scenarios may have their identif iers allocated ahead of time as placeholders before the
full def inition of the Scenario is complete. However, they must have the following basic details identif ied (although

they may be updated later):

• The primary exchange method: Push, Pull or Publish

P a g e | 7

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

• The data being exchanged in general terms: for example, Asset Removal/Installation Events or As -Built

Engineering data

• The primary source system(s)

• The primary target system(s)

These details are enough to give a general idea of the interoperability Scenario and allow Use Cases to
meaningfully reference the Scenario before its complete requirements and secondary data exchanges have been

fully def ined.

Scenarios may be identif ied using any of the following equivalent forms:

• Long form: Scenario 1, Scenario 2, …

• Abbreviated form: S1, S2, …

• Hyphenated abbreviation (for readability): SC-1, SC-2

If the context is clearly referring to a Scenario, the number alone can be used to identify the Scenario.

Note Due to the reusability of Scenarios each Scenario identifier is unique and not specific to the Use Case(s) that make use of i t.

Therefore, there is no added discriminating value by combining the Scenario identifier with a Use Case identifier, as in, Use Case 5-
Scenario 10 or UC5SC10 (or any other variation). Using such combined forms is only necessary if it important to identify both the
Use Case and Scenario to which is being referred.

Event Identifier Scheme

Events will be identif ied by a name comprising the type of event and the type of data to be exchanged (based on

the data requirements of the Event). In contrast to Use Cases and Scenarios, events are f ine grained and
reusable enough that their name can (and must) be unique. Moreover, due to the likely high-number of events
and their reuse in dif ferent contexts, a name-based identif ier is used to provide the reader with an indication of the

purpose/content of the Event without needing to refer to an Event catalogue. The idea is to improve

understanding in contexts in which Events are described, for example, when reading a Scenario description.

Events identif iers are constructed in the form: <event type> <data type>

where the event type is typically a verb describing what the event does or the action that will occur, while the data

type is typically noun indicating the thing involved in or af fected by the event or action.

Some example event identif iers are:

• Pull Segments

• Publish Asset Conf iguration Change

• Push Requests for Work

The following is a list of event types that are used in forming Event identif iers.

Event Type Description

Push A source system sends a message/data to a target system without the target system having
previously requested the data. The source system must have a priori knowledge of the target,
while the target may not know of the source system before receiving the message/data.

There is typically an expectation of some form of processing to be performed by the target system

and a conf irmation or acknowledgement to be returned to the source system.

8 | P a g e

Version 1.0-RC2
© 1998 - 2020 MIMOSA. All rights reserved.

Event Type Description

Pull A target system queries a source system for a set of data to which the source system will
respond. As the instigator, the target system must have a priori knowledge of the source, while

the source system may not know of the target before receiving the query.
A pull event typically implies the returned data will be stored/tracked/managed in the target

system for an extended period of time.

Get A target system queries a source system for a set of data to which the source system will
respond. As the instigator, the target system must have a priori knowledge of the source, while

the source system may not know of the target before receiving the query.

In contrast to a Pull event, a Get event typically implies the returned data will only be stored

temporarily: generally, until some processing has been completed.

Publish A source system sends a message/data to any number of known or unknown target systems.
Target systems may or may not store or otherwise process the data and there is no expectation of

a response to be sent to the source system.

This list may be extended in the future to cover additional event types as required.

User Story Identifier Scheme

User Stories, specif ically each User Story f rame, will be identif ied by numeric identif ier comprising three. The
sequence of identif iers indicates the order in which the f rames occur. Each f rame captures a snapshot of

interactions occurring generally (there may be exceptions to handle branching sequences) in the order the f rames
are def ined but are not required to immediately precede/follow neighboring f rames. Further, elements of User
Story f rames can be connected to show continuity. Such connectors (circles) are identif ied by an uppercase

character, e.g., ‘A’, ‘B’, in alphabetic order. A set of User Stories (or f rames) must ensure that each occurrence of

a connector identif ier represents the same thing to ensure correct continuity across f rames.

User Stories (f rames) can be identif ied using the following equivalent forms:

• Long form: User Story M001, User Story M100, User Story M220, …

• Short form: Story M001, Story M100, Story M220, …

• 3-digit identif ier: M001, M100, M220, …

The identif iers for User Stories are grouped into categories to indicate distinct conceptual groupings. The

identif iers are split approximately every 100 to leave space for new and expanded User Stories . The following

categories are currently def ined:

ID Range Category Description Examples

000-099 OIIE Conf iguration RDL/ISDD selection, conf iguration of org/business unit/site

breakdown structure

100-199 Capital Projects Basic/detailed engineering, Make/Model selection,

procurement, construction/asset installation

200-299 Handover, completion, startup,

and commissioning

Handover of As-Built engineering information

300-399 Operations & Maintenance Condition-Based Maintenance, remove/replace assets

400-499 Miscellaneous Model/Asset information remediation

This list may be extended in the future to cover additional categories as required.

